Example 1 Adding Polynomials with Algebra Tiles

Use algebra tiles to model \((3s^2 + 2s - 6) + (-s^2 - 2s + 1)\).
Write an addition sentence.

Solution

Model each polynomial.
\[
3s^2 + 2s - 6 \quad \quad -s^2 - 2s + 1
\]

Combine the tiles.

Group matching tiles.

Remove zero pairs.

The remaining tiles are:

They represent: \(2s^2 - 5\)

The addition sentence is: \((3s^2 + 2s - 6) + (-s^2 - 2s + 1) = 2s^2 - 5\)
5.4 Subtracting Polynomials

Focus Use different strategies to subtract polynomials.

To subtract a polynomial, we subtract each term of the polynomial.

Example 1 Subtracting Polynomials with Algebra Tiles

Use algebra tiles to model \((3b^2 - 2b - 1) - (-2b^2 - b + 2)\).
Write a subtraction sentence.

Solution

Model: \(3b^2 - 2b - 1\)

To subtract \(-2b^2 - b + 2\), take away 2 \(\square\), 1 \(\square\), and 2 \(\square\).

There are no \(\square\) or \(\square\) to take away.
So, add 2 zero pairs of each tile:

So, these tiles also model \(3b^2 - 2b - 1\).

Take away the tiles for \(-2b^2 - b + 2\).

The remaining tiles represent: \(5b^2 - b - 3\)
The subtraction sentence is: \((3b^2 - 2b - 1) - (-2b^2 - b + 2) = 5b^2 - b - 3\)
Check 5.3a

1. Sketch algebra tiles to model each sum. Then write the sum.

 a) \((6p + 4) + (-2p + 1)\)

 Remaining tiles: ______________________________
 So, \((6p + 4) + (-2p + 1) = \) __________________

 b) \((2x^2 - x + 1) + (x^2 - 3)\)

 Remaining tiles: ______________________________
 So, \((2x^2 - x + 1) + (x^2 - 3) = \) __________________

 c) \((3e^2 + 6e - 5) + (-4e^2 - 3e + 8)\)

 Remaining tiles: ______________________________
 So, \((3e^2 + 6e - 5) + (-4e^2 - 3e + 8) = \) __________________

Algebra tiles are not always available. To add polynomials without tiles:
- remove the brackets
- add the coefficients of like terms

Check 5.4a

1. Use algebra tiles to model each difference. Sketch the tiles that remain, then write the difference.

 a) \((4p + 3) - (2p + 1)\)

 Remaining tiles: ______________________________
 So, \((4p + 3) - (2p + 1) = \) __________________

 b) \((5t + 1) - (-2t + 3)\)

 Remaining tiles: ______________________________
 So, \((5t + 1) - (-2t + 3) = \) __________________

 c) \((3e^2 + 2e - 4) - (4e^2 + 3e - 2)\)

 Remaining tiles: ______________________________
 So, \((3e^2 + 2e - 4) - (4e^2 + 3e - 2) = \) __________________
Practice 5.3a

1. Write the addition sentence modelled by each set of tiles. Use the variable x.

a) \[
 \begin{array}{c}
 \text{tiles} \\
 + \end{array}
 \]

 Remaining tiles:

 b) \[
 \begin{array}{c}
 \text{tiles} \\
 + \end{array}
 \]

 Remaining tiles:

2. Sketch algebra tiles to model each sum. Then write the sum.

a) \((-5w + 8) + (7w - 3) = \)

 Remaining tiles:

 b) \((-6t^2 - 3t + 2) + (4t^2 - t + 1) = \)

 Remaining tiles:

Practice 5.4a

1. Write the subtraction sentence modelled by each set of tiles.

a) \[
 \begin{array}{c}
 \text{tiles} \\
 \downarrow
 \end{array}
 \]

 b) \[
 \begin{array}{c}
 \text{tiles} \\
 \downarrow
 \end{array}
 \]

2. Use algebra tiles to model each difference. Sketch the tiles that remain, then write the difference.

a) \((3r + 2) - (-2r + 3)\)

 Remaining tiles:

 So, \((3r + 2) - (-2r + 3) = \)

 b) \((-4v^2 + 5v - 1) - (-3v^2 + 4v - 2)\)

 Remaining tiles:

 So, \((-4v^2 + 5v - 1) - (-3v^2 + 4v - 2) = \)