4.4 Matching Equations and Graphs

FOCUS Match equations and graphs of linear relations.

Example 1

Matching Equations with Graphs

Match each graph on the grid with its equation.

\[
\begin{align*}
y &= x \\
y &= -x
\end{align*}
\]

Solution

Substitute \(x = -1, \ 0, \ 1 \) in each equation.

\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
-1 & -1 \\
0 & 0 \\
1 & 1 \\
\hline
\end{array}
\]

We chose to use x-values of \(-1, 0, \ 1\) because they're often easy to substitute.

Points \((-1, \ -1), \ (0, \ 0), \ \text{and} \ (1, \ 1)\) lie on Graph B.

So, \(y = x\) matches Graph B.

\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
-1 & 1 \\
0 & 0 \\
1 & -1 \\
\hline
\end{array}
\]

Points \((-1, \ 1), \ (0, \ 0), \ \text{and} \ (1, \ -1)\) lie on Graph A.

So, \(y = -x\) matches Graph A.

Check

1. Which equation describes the graph at the right?

\[
\begin{array}{|c|c|}
\hline
x & y = x + 2 \\
\hline
0 & y = 0 + 2 = _
\hline
1 & y = _
+ 2 = _
\hline
2 & y = _
+ 2 = _
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
x & y = x - 2 \\
\hline
0 & y = _
- 2 = _
\hline
1 & y = _
= _
\hline
2 & y = _
= _
\hline
\end{array}
\]

Points \(_
, \
, \ \) do not lie on the graph.

Points \(_
, \
, \ \) lie on the graph.

So, the equation \(y = _
\) describes the graph.
Example 2 Identifying a Graph Given Its Equation

Which graph on this grid has the equation \(y = x - 1 \)?

Solution

Pick 2 points on each graph and check if their coordinates satisfy the equation.

For Graph A, use: \(C(-1, 0) \) and \(D(0, 1) \)
Check if \(C(-1, 0) \) satisfies the equation \(y = x - 1 \).
Substitute \(x = -1 \) and \(y = 0 \) in \(y = x - 1 \)
Left side: \(y = 0 \) Right side: \(x - 1 = (-1) - 1 \)
\[= -2 \]

The left side does not equal the right side.
So, Graph A does not have equation \(y = x - 1 \).

Verify that the other graph does match the equation.
For Graph B, use: \(E(0, -1) \) and \(F(1, 0) \)
Check if \(E(0, -1) \) satisfies the equation \(y = x - 1 \).
Substitute \(x = 0 \) and \(y = -1 \) in \(y = x - 1 \)
Left side: \(y = -1 \) Right side: \(x - 1 = 0 - 1 \)
\[= -1 \]

The left side does equal the right side.
So, \(E(0, -1) \) lies on the line represented by \(y = x - 1 \).

Check if \(F(1, 0) \) satisfies the equation \(y = x - 1 \).
Substitute \(x = 1 \) and \(y = 0 \) in \(y = x - 1 \)
Left side: \(y = 0 \) Right side: \(x - 1 = 1 - 1 \)
\[= 0 \]

The left side does equal the right side.
So, \(F(1, 0) \) lies on the line represented by \(y = x - 1 \).
So, Graph B has equation \(y = x - 1 \).
1. Show that this graph has equation \(y = 2x + 1 \).
 Use the points labelled on the graph.
 For A(0, 1): Substitute \(x = 0 \) and \(y = 1 \) in \(y = 2x + 1 \).
 Left side: \(y = ________ \) Right side: \(2x + 1 = ________ \)
 \(= ________ \)
 \(= ________ \)
 For B(1, 3): Substitute \(x = ________ \) and \(y = ________ \) in \(y = 2x + 1 \).
 Left side: \(y = ________ \) Right side: \(2x + 1 = ________ \)
 \(= ________ \)
 \(= ________ \)

Practice

1. Show that the equation \(y = x + 2 \) matches the graph.
 Fill in the table of values.
 \[
 \begin{array}{c|c}
 x & y = x + 2 \\
 \hline
 -2 & ________ \\
 -1 & ________ \\
 0 & ________ \\
 \end{array}
 \]
 From the table:
 Points (______, ______), and (______) lie on the graph.
 So, \(y = x + 2 \) matches the graph.

2. Match each equation with a graph.
 \(y = 3x \) \quad \text{and} \quad \(y = -3x \)
 Fill in the tables of values.
 \[
 \begin{array}{c|c}
 x & y = 3x \\
 \hline
 -1 & ________ \\
 0 & ________ \\
 1 & ________ \\
 \end{array} \quad \begin{array}{c|c}
 x & y = -3x \\
 \hline
 -1 & ________ \\
 0 & ________ \\
 1 & ________ \\
 \end{array}
 \]
 From the tables:
 \(y = 3x \) has points (______, ______), and (______).
 These points lie on Graph ______.
 So, \(y = 3x \) matches Graph ______.

 \(y = -3x \) has points (______, ______), and (______).
 These points lie on Graph ______.
 So, \(y = -3x \) matches Graph ______.

168
3. Match each equation with a graph.

\[y = 1 - x \quad \text{and} \quad y = x - 1 \]

![Graph A](image1)

![Graph B](image2)

Fill in the tables of values.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = 1 - x)</th>
<th>(x)</th>
<th>(y = x - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>(y = 1 - (__) = ___)</td>
<td>-1</td>
<td>(y = ___ = ___)</td>
</tr>
<tr>
<td>0</td>
<td>(y = 1 - ___ = ___)</td>
<td>0</td>
<td>(y = ___ = ___)</td>
</tr>
<tr>
<td>1</td>
<td>(y = 1 - ___ = ___)</td>
<td>1</td>
<td>(y = ___ = ___)</td>
</tr>
</tbody>
</table>

From the tables:

\(y = 1 - x \) has points (______), (______), and (______).
These points lie on Graph ______.
So, \(y = 1 - x \) matches Graph ______.

\(y = x - 1 \) has points (______), (______), and (______).
These points lie on Graph ______.
So, \(y = x - 1 \) matches Graph ______.

4. Which graph has equation \(y = x - 3 \)?

For C(3, 0):
Left side: \(y = ____ \) Right side: \(x - 3 = ____ \)
\(y = ____ \) = ____ \)
The left side ______ equal the right side.

For E(0, -3):
Left side: \(y = ____ \) Right side: \(x - 3 = ____ \)
\(y = ____ \) = ____ \)
The left side ______ the right side.
For F(3, 0):
Left side: \(y = ____ \) Right side: \(x - 3 = ____ \)
\(y = ____ \) = ____ \)

So, Graph _____ has equation \(y = x - 3 \).
Lesson 4.4: Matching Equations and Graphs

1. Match each equation with a graph on this grid.
 a) \(y = 2x - 1 \)
 b) \(y = -x + 4 \)
 c) \(y = 3x - 3 \)

2. Match each equation with a graph on this grid.
 a) \(y = -1 \)
 b) \(0 = -x + 1 \)
 c) \(2 = 2x - 3 \)

3. Match each equation with a graph on this grid. Justify your answers.
 a) \(x + y = 5 \)
 b) \(x - y = 5 \)
 c) \(x + y = -5 \)

4. Which equation describes this graph? Justify your answers.
 a) \(y = x + 2 \)
 b) \(y = -x + 2 \)
 c) \(y = x - 2 \)

5. Which equation describes this graph? Justify your answers.
 a) \(x - y = 4 \)
 b) \(x - 4y = 4 \)
 c) \(4x - y = 1 \)